Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Methods Mol Biol ; 2451: 533-545, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35505030

RESUMO

Methods that allow real-time, longitudinal, intravital detection of the fluorescence distribution and the cellular and vascular responses within tumor and normal tissue are important tools to obtain valuable information when investigating new photosensitizers and photodynamic therapy (PDT) responses. Intravital confocal microscopy using the dorsal skinfold chamber model gives the opportunity to visualize and determine the distribution of photosensitizers within tumor and normal tissue. Next to that, it also allows the visualization of the effect of treatment with respect to changes in vascular diameter and blood flow, vascular leakage, and tissue necrosis, in the first days post-illumination. Here, we describe the preparation of the skinfold chamber model and the intravital microscopy techniques involved, for a strategy we recently introduced, that is, the nanobody-targeted PDT. In this particular approach, photosensitizers are conjugated to nanobodies to target these specifically to cancer cells.


Assuntos
Fotoquimioterapia , Anticorpos de Domínio Único , Microscopia Intravital , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Anticorpos de Domínio Único/farmacologia
3.
Oral Oncol ; 123: 105627, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34826688

RESUMO

INTRODUCTION: A challenge in the treatment of patients with head and neck cancer is the management of occult cervical lymph node (LN) metastases. Single-fiber reflectance (SFR) spectroscopy has the potential to detect physiological tissue changes that occur in a positive LN. This pilot study aimed to investigate whether SFR spectroscopy could serve as an alternative or additional technique to detect cervical lymph node metastases. MATERIALS AND METHODS: We performed intraoperative SFR spectroscopy measurements of LNs with and without malignancies. We analyzed if physiological and scattering parameters were significantly altered in positive LNs. RESULTS: Nine patients with a total of nineteen LNs were included. Three parameters, blood volume fraction (BVF), microvascular saturation (StO2), and Rayleigh amplitude, were significantly lower in positive LNs. They were combined into one optical parameter 'delta', using discriminant analysis. Delta was significantly decreased in positive LNs, p = 0,0006. It had a high diagnostic accuracy where the sensitivity, specificity, PPV, and NPV were 90,0%, 88.9%, 90,0%, and 88.9%, respectively. The area under the ROC curve was 96.7% (95% confidence interval 89.7-100.0%). CONCLUSION: This proof of principle study is a first step in the development of an SFR spectroscopy technique to detect LN metastases in real time. A next step towards this goal is replicating these results in LNs with smaller metastases and in a larger cohort of patients. This future study will combine SFR spectroscopy with fine-needle aspiration, using the same needle, to perform preoperative in vivo measurements.


Assuntos
Linfonodos , Biópsia por Agulha Fina/métodos , Humanos , Linfonodos/patologia , Metástase Linfática/diagnóstico , Metástase Linfática/patologia , Projetos Piloto , Análise Espectral
4.
J Control Release ; 323: 269-281, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32330574

RESUMO

RATIONALE: A substantial number of breast cancer patients with an overexpression of the human epidermal growth factor receptor 2 (HER2) have residual disease after neoadjuvant therapy or become resistant to trastuzumab. Photodynamic therapy (PDT) using nanobodies targeted to HER2 is a promising treatment option for these patients. Here we investigate the in vitro and in vivo antitumor efficacy of HER2-targeted nanobody-photosensitizer (PS) conjugate PDT. METHODS: Nanobodies targeting HER2 were obtained from phage display selections. Monovalent nanobodies were engineered into a biparatopic construct. The specificity of selected nanobodies was tested in immunofluorescence assays and their affinity was evaluated in binding studies, both performed in a panel of breast cancer cells varying in HER2 expression levels. The selected HER2-targeted nanobodies 1D5 and 1D5-18A12 were conjugated to the photosensitizer IRDye700DX and tested in in vitro PDT assays. Mice bearing orthotopic HCC1954 trastuzumab-resistant tumors with high HER2 expression or MCF-7 tumors with low HER2 expression were intravenously injected with nanobody-PS conjugates. Quantitative fluorescence spectroscopy was performed for the determination of the local pharmacokinetics of the fluorescence conjugates. After nanobody-PS administration, tumors were illuminated to a fluence of 100 J∙cm-2, with a fluence rate of 50 mW∙cm-2, and thereafter tumor growth was measured with a follow-up until 30 days. RESULTS: The selected nanobodies remained functional after conjugation to the PS, binding specifically and with high affinity to HER2-positive cells. Both nanobody-PS conjugates potently and selectively induced cell death of HER2 overexpressing cells, either sensitive or resistant to trastuzumab, with low nanomolar LD50 values. In vivo, quantitative fluorescence spectroscopy showed specific accumulation of nanobody-PS conjugates in HCC1954 tumors and indicated 2 h post injection as the most suitable time point to apply light. Nanobody-targeted PDT with 1D5-PS and 1D5-18A12-PS induced significant tumor regression of trastuzumab-resistant high HER2 expressing tumors, whereas in low HER2 expressing tumors only a slight growth delay was observed. CONCLUSION: Nanobody-PS conjugates accumulated selectively in vivo and their fluorescence could be detected through optical imaging. Upon illumination, they selectively induced significant tumor regression of HER2 overexpressing tumors with a single treatment session. Nanobody-targeted PDT is therefore suggested as a new additional treatment for HER2-positive breast cancer, particularly of interest for trastuzumab-resistant HER2-positive breast cancer. Further studies are now needed to assess the value of this approach in clinical practice.


Assuntos
Neoplasias da Mama , Fotoquimioterapia , Anticorpos de Domínio Único , Animais , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Fármacos Fotossensibilizantes/uso terapêutico , Receptor ErbB-2 , Trastuzumab , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Photochem Photobiol ; 96(3): 708-717, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32222965

RESUMO

Targeted photodynamic therapy (PDT) in head/neck cancer patients with a conjugate of the anti-epidermal growth factor receptor (EGFR) antibody, Cetuximab and a phthalocyanine photosensitizer IR700DX is under way, but the exact mechanisms of action are still not fully understood. In this study, the EGFR-overexpressing human head/neck OSC-19-luc2-cGFP tumor with transfected GFP gene was used in a skin-fold window chamber model in BALB/c nude mice. The uptake and localization of the conjugate in the tumor and its surrounding normal tissues were studied by an intravital confocal laser scanning microscopy with image analyses. The tumor was also irradiated with 690 nm laser light 24 h after conjugate administration. The vascular and tumor responses were examined by morphological evaluation and immunohistochemistry (IHC). The amount of conjugate in the tumor peaked at 24-48 h after injection. Image analyses of colocalization correlation parameters demonstrated a high fraction of the conjugate IR700DX colocalized in the GFP-expressing tumor cells. PDT-treated tumors showed extensive necrotic/apoptotic destruction with little vascular damage, while IHC showed no HIF-1α expression and decreased EGFR and Ki67 expression with activated caspase-3 overexpression, indicating a direct killing of tumor cells through both necrotic and apoptotic cell death.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Cetuximab/uso terapêutico , Receptores ErbB/antagonistas & inibidores , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/uso terapêutico , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Animais , Antineoplásicos Imunológicos/farmacologia , Linhagem Celular Tumoral , Cetuximab/farmacologia , Humanos , Camundongos , Fármacos Fotossensibilizantes/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Theranostics ; 10(5): 2436-2452, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32089747

RESUMO

Targeted photodynamic therapy (PDT) has the potential to selectively damage tumor tissue and to increase tumor vessel permeability. Here we characterize the tissue biodistribution of two EGFR-targeted nanobody-photosensitizer conjugates (NB-PS), the monovalent 7D12-PS and the biparatopic 7D12-9G8-PS. In addition, we report on the local and acute phototoxic effects triggered by illumination of these NB-PS which have previously shown to lead to extensive tumor damage. Methods: Intravital microscopy and the skin-fold chamber model, containing OSC-19-luc2-cGFP tumors, were used to investigate: a) the fluorescence kinetics and distribution, b) the vascular response and c) the induction of necrosis after illumination at 1 or 24 h post administration of 7D12-PS and 7D12-9G8-PS. In addition, dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) of a solid tumor model was used to investigate the microvascular status 2 h after 7D12-PS mediated PDT. Results: Image analysis showed significant tumor colocalization for both NB-PS which was higher for 7D12-9G8-PS. Intravital imaging showed clear tumor cell membrane localization 1 and 2 h after administration of 7D12-9G8-PS, and fluorescence in or close to endothelial cells in normal tissue for both NB-PS. PDT lead to vasoconstriction and leakage of tumor and normal tissue vessels in the skin-fold chamber model. DCE-MRI confirmed the reduction of tumor perfusion after 7D12-PS mediated PDT. PDT induced extensive tumor necrosis and moderate normal tissue damage, which was similar for both NB-PS conjugates. This was significantly reduced when illumination was performed at 24 h compared to 1 h after administration. Discussion: Although differences were observed in distribution of the two NB-PS conjugates, both led to similar necrosis. Clearly, the response to PDT using NB-PS conjugates is the result of a complex mixture of tumor cell responses and vascular effects, which is likely to be necessary for a maximally effective treatment.


Assuntos
Receptores ErbB/metabolismo , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Nanopartículas/química , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Células Endoteliais/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Microscopia Intravital/métodos , Imageamento por Ressonância Magnética/métodos , Camundongos , Imagem Óptica/métodos , Fármacos Fotossensibilizantes/química , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Distribuição Tecidual/efeitos dos fármacos
7.
Cancers (Basel) ; 12(1)2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31940973

RESUMO

Targeted photodynamic therapy (PDT) has the potential to improve the therapeutic effect of PDT due to significantly better tumor responses and less normal tissue damage. Here we investigated if the efficacy of epidermal growth factor receptor (EGFR) targeted PDT using cetuximab-IRDye700DX is fluence rate dependent. Cell survival after treatment with different fluence rates was investigated in three cell lines. Singlet oxygen formation was investigated using the singlet oxygen quencher sodium azide and singlet oxygen sensor green (SOSG). The long-term response (to 90 days) of solid OSC-19-luc2-cGFP tumors in mice was determined after illumination with 20, 50, or 150 mW·cm-2. Reflectance and fluorescence spectroscopy were used to monitor therapy. Singlet oxygen was formed during illumination as shown by the increase in SOSG fluorescence and the decreased response in the presence of sodium azide. Significantly more cell death and more cures were observed after reducing the fluence rate from 150 mW·cm-2 to 20 mW·cm-2 both in-vitro and in-vivo. Photobleaching of IRDye700DX increased with lower fluence rates and correlated with efficacy. The response in EGFR targeted PDT is strongly dependent on fluence rate used. The effectiveness of targeted PDT is, like PDT, dependent on the generation of singlet oxygen and thus the availability of intracellular oxygen.

8.
Lasers Surg Med ; 50(5): 513-522, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29777587

RESUMO

OBJECTIVE: The aim of this study was to investigate the effects of targeted photoimmunotherapy (PIT) in vitro on cell lines with various expression levels of epidermal growth factor receptor (EGFR) using an anti-EGFR targeted conjugate composed of Cetuximab and IR700DX, phthalocyanine dye. MATERIALS AND METHODS: Relative EGFR density and cell binding assay was conducted in three human head & neck cancer cell lines (scc-U2, scc-U8, and OSC19) and one reference cell line A431. After incubation with the conjugate for 1 or 24 hours, cellular uptake and localization were investigated by confocal laser scanning microscopy and quantified by image analysis. Cell survival was determined using the MTS assay and alamarBlue assay after PIT with a 690 nm laser to a dose of 7 J.cm-2 (at 5 mW.cm-2 ). The mode of cell death was examined with flow cytometry using apoptosis/necrosis staining by Annexin V/propidium iodide, together with immunoblots of anti-apoptotic Bcl-2 family proteins Bcl-2 and Bcl-xL. RESULTS: A431 cells had the highest EGFR density followed by OSC19, and then scc-U2 and scc-U8. The conjugates were localized both on the surface and in the cytosol of the cells after 1- and 24-hour incubation. After 24-hour incubation the granular pattern was more pronounced and in a similar pattern of a lysosomal probe, suggesting that the uptake of conjugates by cells was via receptor-mediated endocytosis. The results obtained from the quantitative imaging analysis correlate with the level of EGFR expression. Targeted PIT killed scc-U8 and A431 cells efficiently; while scc-U2 and OSC19 were less sensitive to this treatment, despite having similar EGFR density, uptake and localization pattern. Scc-U2 cells showed less apoptotic cell dealth than in A431 after 24-hour targeted PIT. Immunoblots showed significantly higher expression of anti-apoptotic Bcl-2 and Bcl-xL proteins in scc-U2 cell lines compared to scc-U8. CONCLUSION: Our study suggests that the effectiveness of EGFR targeted PIT is not only dependent upon EGFR density. Intrinsic biological properties of tumor cell lines also play a role in determining the efficacy of targeted PIT. We have shown that in scc-U2 cells this difference may be caused by differences in the apoptopic pathway. Lasers Surg. Med. 50:513-522, 2018. © 2018 Wiley Periodicals, Inc.


Assuntos
Receptores ErbB/efeitos dos fármacos , Neoplasias de Cabeça e Pescoço/terapia , Imunoterapia , Indóis/farmacologia , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Antineoplásicos/uso terapêutico , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Cetuximab/uso terapêutico , Receptores ErbB/metabolismo , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Isoindóis
9.
Cancers (Basel) ; 9(2)2017 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-28218708

RESUMO

Photodynamic therapy (PDT) is a clinically approved cancer therapy, based on a photochemical reaction between a light activatable molecule or photosensitizer, light, and molecular oxygen. When these three harmless components are present together, reactive oxygen species are formed. These can directly damage cells and/or vasculature, and induce inflammatory and immune responses. PDT is a two-stage procedure, which starts with photosensitizer administration followed by a locally directed light exposure, with the aim of confined tumor destruction. Since its regulatory approval, over 30 years ago, PDT has been the subject of numerous studies and has proven to be an effective form of cancer therapy. This review provides an overview of the clinical trials conducted over the last 10 years, illustrating how PDT is applied in the clinic today. Furthermore, examples from ongoing clinical trials and the most recent preclinical studies are presented, to show the directions, in which PDT is headed, in the near and distant future. Despite the clinical success reported, PDT is still currently underutilized in the clinic. We also discuss the factors that hamper the exploration of this effective therapy and what should be changed to render it a more effective and more widely available option for patients.

10.
J Control Release ; 229: 93-105, 2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-26988602

RESUMO

Photodynamic therapy (PDT) induces cell death through local light activation of a photosensitizer (PS) and has been used to treat head and neck cancers. Yet, common PS lack tumor specificity, which leads to collateral damage to normal tissues. Targeted delivery of PS via antibodies has pre-clinically improved tumor selectivity. However, antibodies have long half-lives and relatively poor tissue penetration, which could limit therapeutic efficacy and lead to long photosensitivity. Here, in this feasibility study, we evaluate at the pre-clinical level a recently introduced format of targeted PDT, which employs nanobodies as targeting agents and a water-soluble PS (IRDye700DX) that is traceable through optical imaging. In vitro, the PS solely binds to cells and induces phototoxicity on cells overexpressing the epidermal growth factor receptor (EGFR), when conjugated to the EGFR targeted nanobodies. To investigate whether this new format of targeted PDT is capable of inducing selective tumor cell death in vivo, PDT was applied on an orthotopic mouse tumor model with illumination at 1h post-injection of the nanobody-PS conjugates, as selected from quantitative fluorescence spectroscopy measurements. In parallel, and as a reference, PDT was applied with an antibody-PS conjugate, with illumination performed 24h post-injection. Importantly, EGFR targeted nanobody-PS conjugates led to extensive tumor necrosis (approx. 90%) and almost no toxicity in healthy tissues, as observed through histology 24h after PDT. Overall, results show that these EGFR targeted nanobody-PS conjugates are selective and able to induce tumor cell death in vivo. Additional studies are now needed to assess the full potential of this approach to improving PDT.


Assuntos
Carcinoma de Células Escamosas/tratamento farmacológico , Receptores ErbB/metabolismo , Indóis/administração & dosagem , Compostos de Organossilício/administração & dosagem , Fotoquimioterapia , Fármacos Fotossensibilizantes/administração & dosagem , Anticorpos de Domínio Único/administração & dosagem , Neoplasias da Língua/tratamento farmacológico , Animais , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Feminino , Humanos , Indóis/uso terapêutico , Luz , Camundongos Endogâmicos BALB C , Camundongos Nus , Compostos de Organossilício/uso terapêutico , Fármacos Fotossensibilizantes/uso terapêutico , Anticorpos de Domínio Único/uso terapêutico , Neoplasias da Língua/metabolismo
11.
PLoS One ; 11(2): e0148850, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26872051

RESUMO

BACKGROUND: Light fractionation significantly increases the efficacy of 5-aminolevulinic acid (ALA) based photodynamic therapy (PDT) using the nano-emulsion based gel formulation BF-200. PDT using BF-200 ALA has recently been clinically approved and is under investigation in several phase III trials for the treatment of actinic keratosis. This study is the first to compare BF-200 ALA with ALA in preclinical models. RESULTS: In hairless mouse skin there is no difference in the temporal and spatial distribution of protoporphyrin IX determined by superficial imaging and fluorescence microscopy in frozen sections. In the skin-fold chamber model, BF-200 ALA leads to more PpIX fluorescence at depth in the skin compared to ALA suggesting an enhanced penetration of BF-200 ALA. Light fractionated PDT after BF-200 ALA application results in significantly more visual skin damage following PDT compared to a single illumination. Both ALA formulations show the same visual skin damage, rate of photobleaching and change in vascular volume immediately after PDT. Fluorescence immunohistochemical imaging shows loss of VE-cadherin in the vasculature at day 1 post PDT which is greater after BF-200 ALA compared to ALA and more profound after light fractionation compared to a single illumination. DISCUSSION: The present study illustrates the clinical potential of light fractionated PDT using BF-200 ALA for enhancing PDT efficacy in (pre-) malignant skin conditions such as basal cell carcinoma and vulval intraepithelial neoplasia and its application in other lesion such as cervical intraepithelial neoplasia and oral squamous cell carcinoma where current approaches have limited efficacy.


Assuntos
Ácido Aminolevulínico/análogos & derivados , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Pele/efeitos dos fármacos , Ácido Aminolevulínico/farmacocinética , Ácido Aminolevulínico/farmacologia , Animais , Animais não Endogâmicos , Fracionamento da Dose de Radiação , Avaliação Pré-Clínica de Medicamentos , Células Endoteliais/metabolismo , Feminino , Camundongos , Microscopia de Fluorescência , Fármacos Fotossensibilizantes/farmacocinética , Protoporfirinas/farmacocinética , Pele/irrigação sanguínea , Pele/metabolismo , Sus scrofa
12.
PLoS One ; 9(8): e104448, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25111655

RESUMO

Photodynamic therapy (PDT) is an established treatment modality, used mainly for anticancer therapy that relies on the interaction of photosensitizer, light and oxygen. For the treatment of pathologies in certain anatomical sites, improved targeting of the photosensitizer is necessary to prevent damage to healthy tissue. We report on a novel dual approach of targeted PDT (vascular and cellular targeting) utilizing the expression of neuropeptide somatostatin receptor (sst2) on tumor and neovascular-endothelial cells. We synthesized two conjugates containing the somatostatin analogue [Tyr3]-octreotate and Chlorin e6 (Ce6): Ce6-K3-[Tyr3]-octreotate (1) and Ce6-[Tyr3]-octreotate-K3-[Tyr3]-octreotate (2). Investigation of the uptake and photodynamic activity of conjugates in-vitro in human erythroleukemic K562 cells showed that conjugation of [Tyr3]-octreotate with Ce6 in conjugate 1 enhances uptake (by a factor 2) in cells over-expressing sst2 compared to wild-type cells. Co-treatment with excess free Octreotide abrogated the phototoxicity of conjugate 1 indicative of a specific sst2-mediated effect. In contrast conjugate 2 showed no receptor-mediated effect due to its high hydrophobicity. When compared with un-conjugated Ce6, the PDT activity of conjugate 1 was lower. However, it showed higher photostability which may compensate for its lower phototoxicity. Intra-vital fluorescence pharmacokinetic studies of conjugate 1 in rat skin-fold observation chambers transplanted with sst2+ AR42J acinar pancreas tumors showed significantly different uptake profiles compared to free Ce6. Co-treatment with free Octreotide significantly reduced conjugate uptake in tumor tissue (by a factor 4) as well as in the chamber neo-vasculature. These results show that conjugate 1 might have potential as an in-vivo sst2 targeting photosensitizer conjugate.


Assuntos
Terapia de Alvo Molecular/métodos , Fotoquimioterapia/métodos , Receptores de Somatostatina/metabolismo , Somatostatina/análogos & derivados , Somatostatina/uso terapêutico , Sequência de Aminoácidos , Animais , Transporte Biológico , Humanos , Espaço Intracelular/metabolismo , Células K562 , Ratos , Somatostatina/metabolismo , Somatostatina/farmacocinética
13.
Photochem Photobiol ; 90(4): 896-902, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24628584

RESUMO

Different distributions of hexyl aminolevulinate (HAL), aminolevulinic acid (ALA) and methyl aminolevulinate (MAL) in the superficial vasculature are not well studied but they are hypothesized to play an important role in topical photodynamic therapy (PDT). The colocalization of fluorescent CD31 and protoporphyrin IX (PpIX) was calculated using confocal microscopy of mouse skin sections to investigate the vascular distribution after topical application. Vascular damage leads to disruption of the normal endothelial adherens junction complex, of which CD144 is an integral component. Therefore, normal CD31 combined with loss of normal fluorescent CD144 staining was visually scored to assess vascular damage. Both the vascular PpIX concentration and the vascular damage were highest for HAL, then ALA and then MAL. Vascular damage in MAL was not different from normal contralateral control skin. This pattern is consistent with literature data on vasoconstriction after PDT, and with the hypothesis that the vasculature plays a role in light fractionation that increases efficacy for HAL and ALA-PDT but not for MAL. These findings indicate that endothelial cells of superficial blood vessels synthesize biologically relevant PpIX concentrations, leading to vascular damage. Such vascular effects are expected to influence the oxygenation of tissue after PDT which can be important for treatment efficacy.


Assuntos
Ácido Aminolevulínico/análogos & derivados , Ácido Aminolevulínico/farmacologia , Transtornos de Fotossensibilidade/induzido quimicamente , Fármacos Fotossensibilizantes/farmacologia , Pele/efeitos dos fármacos , Administração Tópica , Ácido Aminolevulínico/administração & dosagem , Animais , Antígenos CD , Caderinas , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/efeitos da radiação , Camundongos , Fármacos Fotossensibilizantes/administração & dosagem , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Protoporfirinas/metabolismo
14.
J Biomed Opt ; 19(1): 15010, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24477382

RESUMO

Quantification of fluorescence in vivo is complicated by the influence of tissue optical properties on the collected fluorescence signal. When tissue optical properties in the measurement volume are quantified, one can obtain the intrinsic fluorescence, which equals the product of fluorophore absorption coefficient and quantum yield. We applied this method to in vivo single-fiber fluorescence spectroscopy measurements on mouse tongue, skin, liver, and oral squamous cell carcinoma, where we detected intrinsic fluorescence spectra of the photosensitizers chlorin e6 and Bremachlorin at t=[3,4.5,6,24,48] h incubation time. We observed a tissue-dependent maximum of 35% variation in the total correction factor over the visible wavelength range. Significant differences in spectral shape over time between sensitizers were observed. Although the wavelength position of the fluorescence intensity maximum for ce6 shifted to the red, Bremachlorin showed a blue shift. Furthermore, the Bremachlorin peak appeared to be broader than the ce6 fluorescence peak. Intrinsic fluorescence intensity, which can be related to photosensitizer concentration, was decreasing for all time points but showed significantly more Bremachlorin present compared to ce6 at long incubation times. Results from this study can be used to define an optimal treatment protocol for Bremachlorin-based photodynamic therapy.


Assuntos
Clorofila/análogos & derivados , Fármacos Fotossensibilizantes/química , Animais , Carcinoma de Células Escamosas/patologia , Clorofila/química , Clorofilídeos , Feminino , Fluorescência , Proteínas de Fluorescência Verde , Fígado/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Microscopia de Fluorescência , Neoplasias Bucais/patologia , Distribuição Normal , Óptica e Fotônica , Fotoquimioterapia , Porfirinas/química , Pele/patologia , Espectrometria de Fluorescência , Espectrofotometria , Língua/patologia
15.
Lasers Surg Med ; 46(3): 224-34, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24436109

RESUMO

BACKGROUND AND OBJECTIVE: The effect of photodynamic therapy (PDT) is dependent on the localization of photosensitizer in the treatment volume at the time of illumination. Investigation of photosensitizer pharmacokinetics in and around the treatment volume aids in determining the optimal drug light interval for PDT. MATERIALS AND METHODS: In this paper we have investigated the distribution of the photosensitizers chlorin e6 and Bremachlorin in the oral squamous cell carcinoma cell-line OSC19-Luc-Gfp in a tongue tumor, tumor boundary, invasive tumor boundary, and normal tongue tissue by the use of confocal microscopy of frozen sections. Tongues were harvested at t = [3, 4.5, 6, 24, 48] hours after injection. RESULTS: Both photosensitizers showed a decreasing fluorescence with increasing incubation time, and at all time points higher fluorescence was measured in tumor boundary than in tumor itself. For short incubation times, a higher fluorescence intensity was observed in the invasive tumor border and normal tissue compared to tumor tissue. Bremachlorin showed a small increase in tumor to normal ratio at 24 and 48 hours incubation time. Ce6 was undetectable at 48 hours. We did not find a correlation between photosensitizer localization and the presence of vasculature. CONCLUSION: The modest tumor/tumor boundary to normal selectivity of between 1.2 and 2.5 exhibited by Bremachlorin 24 and 48 hours after administration may allow selective targeting of tongue tumors. Further studies investigating the relationship between Bremachlorin concentration and therapeutic efficacy PDT with long incubation times are warranted.


Assuntos
Carcinoma de Células Escamosas/tratamento farmacológico , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacocinética , Porfirinas/farmacocinética , Neoplasias da Língua/tratamento farmacológico , Animais , Clorofilídeos , Combinação de Medicamentos , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Confocal , Fármacos Fotossensibilizantes/uso terapêutico , Porfirinas/uso terapêutico , Distribuição Aleatória
16.
Lasers Surg Med ; 45(10): 668-78, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24174342

RESUMO

BACKGROUND AND OBJECTIVE: Foslip and Fospeg are liposomal formulations of the photosensitizer mTHPC (Foscan), which is used for photodynamic therapy (PDT) of malignancies. Literature suggests that liposomal mTHPC formulations have better properties and increased tumor uptake compared to Foscan. To investigate this, we used the 4NQO-induced carcinogen model to compare the localization of the different mTHPC formulations within normal, precancerous, and cancerous tissue. In contrast to xenograft models, the 4NQO model closely mimics the carcinogenesis of human oral dysplasia. MATERIALS AND METHODS: Fifty-four rats drank water with the carcinogen 4NQO. When oral examination revealed tumor, the rats received 0.15 mg/kg mTHPC (Foscan, Foslip, or Fospeg). At 2, 4, 8, 24, 48, or 96 hours after injection the rats were sacrificed. Oral tissue was sectioned for HE slides and for fluorescence confocal microscopy. The HE slides were scored on the severity of dysplasia by the epithelial atypia index (EAI). The calibrated fluorescence intensity per formulation or time point was correlated to EAI. RESULTS: Fospeg showed higher mTHPC fluorescence in normal and tumor tissue compared to both Foscan and Foslip. Significant differences in fluorescence between tumor and normal tissue were found for all formulations. However, at 4, 8, and 24 hours only Fospeg showed a significant difference. The Pearson's correlation between EAI and mTHPC fluorescence proved weak for all formulations. CONCLUSION: In our induced carcinogenesis model, Fospeg exhibited a tendency for higher fluorescence in normal and tumor tissue compared to Foslip and Foscan. In contrast to Foscan and Foslip, Fospeg showed significantly higher fluorescence in tumor versus normal tissue at earlier time points, suggesting a possible clinical benefit compared to Foscan. Low correlation between grade of dysplasia and mTHPC fluorescence was found.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Mesoporfirinas/farmacocinética , Mucosa Bucal/metabolismo , Neoplasias Bucais/metabolismo , Fármacos Fotossensibilizantes/farmacocinética , 4-Nitroquinolina-1-Óxido , Animais , Carcinógenos , Carcinoma de Células Escamosas/induzido quimicamente , Carcinoma de Células Escamosas/tratamento farmacológico , Lipossomos , Masculino , Mesoporfirinas/administração & dosagem , Mesoporfirinas/uso terapêutico , Microscopia Confocal , Microscopia de Fluorescência , Mucosa Bucal/patologia , Neoplasias Bucais/induzido quimicamente , Neoplasias Bucais/tratamento farmacológico , Variações Dependentes do Observador , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/administração & dosagem , Fármacos Fotossensibilizantes/uso terapêutico , Ratos , Ratos Wistar
17.
Photochem Photobiol Sci ; 12(2): 241-5, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23108451

RESUMO

Light fractionation, with a long dark interval, significantly increases the response to ALA-PDT in pre-clinical models and in non-melanoma skin cancer. We investigated if this increase in efficacy can be replicated in PAM 212 cells in vitro. The results show a significant decrease in cell survival after light fractionation which is dependent on the PpIX concentration and light dose of the first light fraction. This study supports the hypothesis that an underlying cellular mechanism is involved in the response to light fractionation in which a first light fraction leads to sub-lethally damaged cells that are sensitised to a second light fraction 2 hours later. The current study reveals the in vitro circumstances under which we can investigate the cellular pathways involved.


Assuntos
Ácido Aminolevulínico/farmacologia , Luz , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Camundongos , Relação Estrutura-Atividade
18.
Lasers Surg Med ; 43(6): 528-36, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21761424

RESUMO

BACKGROUND AND OBJECTIVE: Foslip® and Fospeg® are liposomal formulations of the photosensitizer mTHPC, intended for use in Photodynamic Therapy (PDT) of malignancies. Foslip consists of mTHPC encapsulated in conventional liposomes, Fospeg consists of mTHPC encapsulated in pegylated liposomes. Possible differences in tumor fluorescence and vasculature kinetics between Foslip, Fospeg, and Foscan® were studied using the rat window-chamber model. MATERIAL AND METHODS: In 18 rats a dorsal skin fold window chamber was installed and a mammary carcinoma was transplanted in the subcutaneous tissue. The dosage used for intravenous injection was 0.15 mg/kg mTHPC for each formulation. At seven time-points after injection (5 minutes to 96 hours) fluorescence images were made with a CCD. The achieved mTHPC fluorescence images were corrected for tissue optical properties and autofluorescence by the ratio fluorescence imaging technique of Kascakova et al. Fluorescence intensities of three different regions of interest (ROI) were assessed; tumor tissue, vasculature, and surrounding connective tissue. RESULTS: The three mTHPC formulations showed marked differences in their fluorescence kinetic profile. After injection, vascular mTHPC fluorescence increased for Foslip and Fospeg but decreased for Foscan. Maximum tumor fluorescence is reached at 8 hours for Fospeg and at 24 hours for Foscan and Foslip with overall higher fluorescence for both liposomal formulations. Foscan showed no significant difference in fluorescence intensity between surrounding tissue and tumor tissue (selectivity). However, Fospeg showed a trend toward tumor selectivity at early time points, while Foslip reached a significant difference (P < 0.05) at these time points. CONCLUSIONS: Our results showed marked differences in fluorescence intensities of Fospeg, Foslip, and Foscan, which suggest overall higher bioavailability for the liposomal formulations. Pegylated liposomes seemed most promising for future application; as Fospeg showed highest tumor fluorescence at the earlier time points.


Assuntos
Mesoporfirinas/farmacocinética , Neoplasias/metabolismo , Animais , Feminino , Fluorescência , Lipossomos , Mesoporfirinas/administração & dosagem , Mesoporfirinas/análise , Transplante de Neoplasias , Neoplasias/química , Ratos , Ratos Endogâmicos F344
19.
Biomed Opt Express ; 2(5): 1030-9, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21559117

RESUMO

Nonlinear spectral imaging microscopy (NSIM) allows simultaneous morphological and spectroscopic investigation of intercellular events within living animals. In this study we used NSIM for in vivo time-lapse in-depth spectral imaging and monitoring of protein-bound and free reduced nicotinamide adenine dinucleotide (NADH) in mouse keratinocytes following total acute ischemia for 3.3 h at ~3 min time intervals. The high spectral resolution of NSIM images allows discrimination between the two-photon excited fluorescence emission of protein-bound and free NAD(P)H by applying linear spectral unmixing to the spectral image data. Results reveal the difference in the dynamic response between protein-bound and free NAD(P)H to ischemia-induced hypoxia/anoxia. Our results demonstrate the capability of nonlinear spectral imaging microscopy in unraveling dynamic cellular metabolic events within living animals for long periods of time.

20.
Lasers Med Sci ; 26(6): 789-801, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21279401

RESUMO

A major challenge in biomedical optics is the accurate quantification of in vivo fluorescence images. Fluorescence imaging is often used to determine the pharmacokinetics of photosensitizers used for photodynamic therapy. Often, however, this type of imaging does not take into account differences in and changes to tissue volume and optical properties of the tissue under interrogation. To address this problem, a ratiometric quantification method was developed and applied to monitor photosensitizer meso-tetra(hydroxyphenyl) chlorin (mTHPC) pharmacokinetics in the rat skin-fold observation chamber. The method employs a combination of dual-wavelength excitation and dual-wavelength detection. Excitation and detection wavelengths were selected in the NIR region. One excitation wavelength was chosen to be at the Q band of mTHPC, whereas the second excitation wavelength was close to its absorption minimum. Two fluorescence emission bands were used; one at the secondary fluorescence maximum of mTHPC centered on 720 nm, and one in a region of tissue autofluorescence. The first excitation wavelength was used to excite the mTHPC and autofluorescence and the second to excite only autofluorescence, so that this could be subtracted. Subsequently, the autofluorescence-corrected mTHPC image was divided by the autofluorescence signal to correct for variations in tissue optical properties. This correction algorithm in principle results in a linear relation between the corrected fluorescence and photosensitizer concentration. The limitations of the presented method and comparison with previously published and validated techniques are discussed.


Assuntos
Fármacos Fotossensibilizantes/farmacocinética , Algoritmos , Animais , Feminino , Fluorescência , Raios Infravermelhos , Mesoporfirinas/administração & dosagem , Mesoporfirinas/farmacocinética , Fenômenos Ópticos , Fotoquimioterapia , Fármacos Fotossensibilizantes/administração & dosagem , Radiometria/métodos , Radiometria/estatística & dados numéricos , Ratos , Ratos Endogâmicos F344 , Pele/irrigação sanguínea , Pele/efeitos dos fármacos , Pele/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...